Start the program from the data directory in the source tree. We’ll use UNIX shell redirection to get everything in a text file:
cd src/jldesmear/data
python ../api/traditional.py < test1.inp > test1.out
The program will print a header:
<<< SAS data desmearing, by Pete R. Jemian
<<< Based on the iterative technique of JA Lake and PR Jemian.
<<< P.R.Jemian,; Ph.D. thesis, Northwestern University (1990).
<<< J.A. Lake; ACTA CRYST 23 (1967) 191-194.
<<<
<<< $Id$
<<< desmear using the same FORTRAN & C command line interface
<<<
Then, the program will ask some questions about the input data. Here, the test data is test1.smr:
<<< What is the input data file name? <''=Quit> <> ==>
>>> test1.smr
Name the (new) file name to write the results. If it exists, it will be overwritten without further comment. Here, we choose the name test1.out:
<<< What is the output data file name? <> ==>
>>> test1.out
The slit length is the term l_o and has the same units as X:
<<< What is the slit length (x-axis units)? <1.0> ==>
>>> .08
To complete the smearing integral at highest X, it is necessary to extrapolate beyond the range of measured data. Choose the functional form that best represents the data at highest X. Fit coefficients will be evaluated for each desmearing iteration over the range X_start <= X <= X_max:
<<< Extrapolation forms to avoid truncation-error.
<<< constant = flat background, I(q) = B
<<< linear = linear, I(q) = b + q * m
<<< powerlaw = power law, I(q) = b * q^m
<<< Porod = Porod law, I(q) = Cp + Bkg / q^4
<<<
Choose the linear form (although constant would work with this data as well):
<<< Which form? <constant> ==>
>>> linear
This is X-start as noted above: .08:
<<< What X to begin evaluating extrapolation (x-axis units)? <1.0> ==>
>>> .08
Accept the solution after 20 iterations this time:
<<< How many iteration(s)? (10000 = infinite) <10000> ==>
>>> 20
This question is largely historical. The fast method is always the best choice. The others were implementations of either Jansson or Halsey & Blass. They converge more slowly by far. That said, you are free to re-determine this for yourself. Press the [return] key to accept the default suggestion:
<<< Weighting methods for iterative corrections:
<<< Correction = weight * (MeasuredI - SmearedI)
<<< constant: weight = 1.0
<<< fast: weight = CorrectedI / SmearedI
<<< ChiSqr: weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))
<<<
<<< Which method? <fast> ==>
>>>
Now the program starts the work of desmearing. The first step shows an awful chi-square statistic. This will improve with subsequent iterations. The plot is standardized residual vs. data point number. There are ========== bars indicated at +1 and -1; these merge together on the first plot.:
Input file: test1.smr
-/|\ ...
standardized residuals, ChiSqr = 1.29823e+07, iteration=0
x: min=1 step=3.45833 max=250
y: min=-545.836 step=24.8717 max=1.34169
-------------------------------------------------------------------------
| + |
|==============================================+++++++++++++++++++++++++++|
|+ ++ |
| ++ |
| ++ |
|+ + ++ |
|++ + ++ |
| + ++ |
| +++ ++ |
| +++ + |
| ++ + |
| ++ ++ |
| + + |
| ++ +++ ++ |
| ++ +++++ + |
| ++++++++++++ + |
| + |
| + |
| + |
| + |
| + |
| + |
| + |
-------------------------------------------------------------------------
After the next iteration, the chi-squared statistic has improved by an order of magnitude but the plot still does not different:
standardized residuals, ChiSqr = 1.36804e+06, iteration=1
x: min=1 step=3.45833 max=250
y: min=-206.354 step=9.44611 max=1.46073
-------------------------------------------------------------------------
| + |
|================================================+++++++++++++++++++++++++|
|+ ++ |
| ++ |
|+ + |
| + + + |
| +++ ++ |
| +++++ ++ |
| +++ ++ |
| ++ +++++ ++ |
| ++ +++++++ ++ |
| +++++++++++ + |
| + + |
| + |
| + |
| ++ |
| + |
| + |
| + |
| + |
| + |
| + |
| + |
-------------------------------------------------------------------------
Skipping forward a few iterations, we see some real progress:
standardized residuals, ChiSqr = 566.385, iteration=5
x: min=1 step=3.45833 max=250
y: min=-3.97891 step=0.499962 max=7.02024
-------------------------------------------------------------------------
| + |
| + |
| |
| |
| |
| |
| |
| + + + |
| + + +++ |
| + ++++ |
|+ + ++++ + |
|++ + ++ |
| + + ++ ++ + |
|=======+===+=+=++=++=+==============+=============+===+===+======+====== |
| + ++ +++ + ++ +++++++ + + + ++ + ++++++++++++++++|
|+ +++ + + ++ +++++ + ++++++++++ + + ++++ + ++++++++++++++++ |
|+ + + ++ + + ++ + + + + ++ +++ +++++ ++ + |
|========+===================++=====+==========+=+++=====+=============== |
| + + +++ |
| + |
| + + |
| ++ |
| ++ |
-------------------------------------------------------------------------
After about 10 iterations or so, it seems convergence has been achieved. The chi-squared statistic has dropped and the plot looks more randomly-arranged about 0.:
standardized residuals, ChiSqr = 103.479, iteration=11
x: min=1 step=3.45833 max=250
y: min=-2.89125 step=0.349475 max=4.7972
-------------------------------------------------------------------------
| + |
| + |
| |
| |
| |
| + |
| + |
| |
| |
| |
|+ |
|=+====+================================================================= |
| + ++ + + + + + + + |
| + + + + ++ ++ + + ++ ++ +++ ++ + + |
|+ +++ ++++++++++++ ++ +++++ ++++++++++++++ ++++ ++++ +++++++++++++++++|
| + ++ +++ ++ ++++ +++++++++ ++ ++++++++ +++++ ++ ++ ++ + ++++ |
|++ + + + + ++ + + + + |
|====++=+================================================================ |
|+ + |
| |
| + |
| |
| + |
-------------------------------------------------------------------------
Finally, after 20 iterations (numbered 0 .. 19):
standardized residuals, ChiSqr = 46.9362, iteration=19
x: min=1 step=3.45833 max=250
y: min=-2.94353 step=0.264922 max=2.88475
-------------------------------------------------------------------------
| + |
| |
| + |
| |
| + |
| + |
| |
|+ |
|==+===================================================================== |
| + ++ |
| + + ++ + + + ++ + + + ++++ +++ ++ +|
| + +++ ++++++ ++ + ++ ++++++++++++++++++++++++++++++++++ +++++++++++++ |
| ++ + ++++++ ++++ + +++++++++ + ++ ++++++++++++++++ +++++ + ++ + ++ ++ |
|++ + + ++ + + |
|+ + |
|======+================================================================= |
| + ++ |
| |
| |
| |
| |
| |
| + |
-------------------------------------------------------------------------
The result is accepted and the data are saved to the output file:
Saving data in file: test1.out
SAS log-log plot, final, S=input, D=desmeared
x: min=-7.898 step=0.0889226 max=-1.49558
y: min=3.0786 step=0.637599 max=17.1058
-------------------------------------------------------------------------
|D |
|DDDDDD |
|D DDDDDDDD |
| DDDDD |
| DDD |
| DDD |
| DDD |
| DD |
|SSSSS DDD |
| SSSSSSS DD |
| SSSSS DDD |
| SSSS DD |
| SSSS DDD |
| SSS DD |
| SSS DDD |
| SSS DDD |
| SSS DDD |
| SSSS DDD |
| SSS DD |
| SSSS DDDD |
| SSSSS DDDD |
| SSSSSDDDDDDDDDD D DD DDDDDD |
| D DDDDDSSDDDDDDDDDDDDDD|
-------------------------------------------------------------------------
test1.smr
test1.dsm
0.08
linear
0.08
20
fast
0.000371484 211554 1874.86
0.000386255 201603 1721.35
0.000392446 193423 4250.66
0.000400937 205280 1563.25
0.000415708 198569 1446.58
0.000430391 198201 1334.48
0.000445162 191430 624.224
0.000451353 188171 605.955
0.000459932 192450 592.662
0.000474703 186589 566.562
0.000489386 184247 541.442
0.000504157 179316 519.719
0.000510348 172441 505.368
0.000518928 175473 497.727
0.000533699 171012 479.382
0.000548381 167081 461.221
0.000563063 162303 446.693
0.000569255 158623 439.165
0.000577834 160015 434.267
0.000592605 155494 421.757
0.000607376 151073 407.866
0.000622059 146555 396.055
0.00062825 143885 390.636
0.00063683 143034 384.251
0.0006516 139041 373.826
0.000666371 136947 365.092
0.000681054 134324 357.809
0.000687245 131392 352.914
0.000695825 131867 350.159
0.000710507 128250 342.395
0.000725278 125404 334.673
0.000739961 122355 327.753
0.000746152 119544 323.132
0.000754732 118748 319.076
0.000769502 115545 311.966
0.000784273 113124 305.553
0.000798956 110665 299.932
0.000805147 109629 298.178
0.000813727 108497 294.437
0.000828498 106067 289.296
0.000843269 103730 283.712
0.000857951 101055 278.13
0.000864142 100263 276.837
0.000872633 98975.8 272.922
0.000887404 96617 267.848
0.000902175 94721.9 263.148
0.000916946 92784.7 258.983
0.000923138 92237.6 258.352
0.000931629 91165.3 255.102
0.0009464 89261.8 251.208
0.00096117 87432.7 247.126
0.000975941 85430.8 243.068
0.000982133 84676.8 242.072
0.000990624 83582.8 238.943
0.00100539 81637.9 234.966
0.00102008 80007.9 231.251
0.00103485 78480.9 228.051
0.00104104 78020.3 227.629
0.00104953 76980.6 225.019
0.0010643 75445.5 221.885
0.00107907 73855.7 218.547
0.00109384 72137.1 215.031
0.00110003 71587.7 214.305
0.00110853 70608.1 211.782
0.0011233 69061.3 208.548
0.00113807 67611.7 205.543
0.00115284 66343.4 202.81
0.00115903 65983.2 202.392
0.00116752 65188.2 200.268
0.0011822 64072.9 197.834
0.00119697 62740.3 195.054
0.00121175 61380.9 192.227
0.00121794 60799.2 191.38
0.00122652 60016.7 189.35
0.0012412 58722.4 186.613
0.00125597 57573.3 184.131
0.00127693 56176.4 181.407
0.00133584 52010.5 172.352
0.00139483 48213.1 163.997
0.00145383 44843.2 156.44
0.00151274 41576.4 149.07
0.00157173 38658.5 142.343
0.00160092 37457.7 139.705
0.00163073 36024.4 136.191
0.00168963 33573.8 130.321
0.00174863 31319.9 124.828
0.00180753 29339.2 119.87
0.00183672 28494.9 117.853
0.00186653 27449.7 115.05
0.00192553 25747.7 110.669
0.00198443 24113.1 106.346
0.00204352 22592.2 102.201
0.0020727 22004.4 100.667
0.00210242 21173.5 98.3129
0.00216142 19890 90.6563
0.00222041 18698.5 85.5865
0.00227932 17602 82.5591
0.00230851 17224 83.2993
0.00233831 16587.4 83.7386
0.00239722 15654 77.0515
0.00245622 14772.5 74.475
0.00251521 13950.9 72.0371
0.0025444 13671.6 71.2492
0.00257412 13179.3 69.6967
0.00263311 12441.4 67.4163
0.00269211 11793.6 65.3736
0.0027802 11030.1 62.915
0.0030161 8974.34 55.8783
0.00325199 7394.04 50.0284
0.00348788 6118.83 44.9183
0.00372368 5113.03 40.5794
0.00395958 4318.86 7.43972
0.00419538 3658.3 6.64065
0.00443127 3139.32 5.99763
0.00466716 2713.56 5.45451
0.00490297 2365 5.00216
0.00513886 2070.02 4.60551
0.00537466 1830.58 4.28091
0.00561065 1625.29 3.99215
0.00584645 1453.64 3.74405
0.00608234 1305.37 3.52884
0.00631815 1174.14 3.32995
0.00655404 1064.44 3.16037
0.00678993 967.427 3.01166
0.00702582 878.938 2.86918
0.00726163 803.771 2.74895
0.00749743 734.672 2.63429
0.00773332 677.548 2.53748
0.00796921 626.597 2.44863
0.00820511 579.635 2.36697
0.00844091 536.91 2.29218
0.0086768 500.271 2.22717
0.00891261 464.949 2.1601
0.00914859 430.058 2.09694
0.00938439 399.444 2.03912
0.00962028 375.619 1.9894
0.00985609 348.697 1.93717
0.010092 328.261 1.8957
0.0103279 309.772 1.85859
0.0104458 302.426 1.84512
0.0105638 292.196 1.82164
0.0107996 272.191 1.78264
0.0110354 261.342 1.75923
0.0112713 245.999 1.72526
0.0113893 241.462 1.7191
0.0115072 233.87 1.70363
0.011743 222.267 1.67677
0.0119789 213.558 1.65675
0.0122147 202.04 1.63174
0.0123326 196.924 1.62249
0.0124505 192.761 1.6123
0.0126865 185.892 1.59555
0.0129223 176.483 1.57692
0.0131582 171.938 1.56441
0.0132761 167.199 1.55535
0.0142196 144.551 1.50508
0.0151631 126.664 1.46166
0.0161065 112.514 1.42482
0.0170499 98.3946 1.39316
0.0179933 90.2142 1.37318
0.0189368 82.8805 1.35248
0.0198803 75.2953 1.33271
0.0208238 71.261 1.3229
0.0217672 64.006 1.30757
0.0227106 61.7542 1.30381
0.023654 61.7168 1.30093
0.0245975 57.8197 1.28888
0.025541 54.3294 1.27828
0.0264845 53.7715 1.27858
0.0274279 51.3464 1.27158
0.0283713 50.7223 1.27033
0.0293147 48.6453 1.27083
0.0302582 46.8375 1.26587
0.0312017 47.594 1.26671
0.0321451 44.9242 1.25974
0.0330885 42.9397 1.25796
0.034032 44.3886 1.25858
0.0349755 44.6934 1.25971
0.0359189 44.6929 1.26103
0.0368623 43.0895 1.25534
0.0378057 43.2662 1.25507
0.0387492 42.1147 1.25495
0.0396927 41.2501 1.25071
0.0406362 41.5693 1.25334
0.0415795 41.4826 1.25233
0.0425229 42.423 1.25764
0.0429947 40.4159 1.25491
0.0434664 41.3698 1.25613
0.0444099 39.2216 1.25011
0.0453533 40.7132 1.25594
0.0462968 40.6365 1.25534
0.0467685 40.1072 1.25637
0.0472402 39.9715 1.25581
0.0481837 41.5141 1.26048
0.0491271 39.4205 1.25422
0.0500705 39.967 1.25656
0.0505422 40.7231 1.25899
0.051014 39.0016 1.25301
0.0519574 38.1899 1.25023
0.0529008 40.2931 1.2583
0.0538443 38.8024 1.25495
0.054316 39.2194 1.25647
0.0547878 37.9188 1.25364
0.0557312 36.8598 1.25236
0.0566745 38.9685 1.25924
0.0580898 38.4669 1.25824
0.0618635 39.8942 1.26309
0.0656372 39.609 1.26249
0.0694109 38.9038 1.2647
0.0731847 38.208 1.26368
0.0769583 38.1583 1.26555
0.0807321 39.239 1.26895
0.0845057 38.8689 1.27167
0.0882794 36.3077 1.26913
0.0920531 37.3417 1.27279
0.0958267 39.2128 1.27939
0.0996003 38.8772 1.27929
0.103374 38.2984 1.28285
0.107148 37.2503 1.28113
0.110921 38.2859 1.28426
0.114695 37.1071 1.28385
0.118468 37.2796 1.28837
0.122242 38.1078 1.29084
0.126015 37.9901 1.29471
0.129789 37.2332 1.29618
0.133562 37.525 1.29856
0.137336 39.7959 1.30577
0.141109 37.5901 1.30129
0.144883 37.5137 1.30765
0.148656 38.3692 1.31024
0.152429 37.9165 1.30974
0.156203 38.4753 1.31639
0.159976 38.8267 1.3178
0.163749 37.9845 1.32281
0.167523 39.9222 1.32564
0.171296 41.1806 1.32861
0.175069 38.5425 1.32443
0.178843 39.2107 1.33117
0.182616 38.3168 1.33153
0.186389 40.2098 1.33532
0.190162 39.1407 1.33442
0.193935 38.3557 1.33652
0.197708 39.7318 1.34276
0.201481 36.7008 1.33804
0.205254 37.2223 1.34263
0.209027 39.6126 1.34766
0.2128 37.604 1.34668
0.216573 39.0708 1.3538
0.220346 38.2783 1.35074
0.224119 38.589 1.35581
0.000371484 2.68503e+07 1874.86
0.000386255 1.89615e+07 1721.35
0.000392446 9.24608e+06 4250.66
0.000400937 2.3107e+07 1563.25
0.000415708 1.83063e+07 1446.58
0.000430391 2.17062e+07 1334.48
0.000445162 1.77899e+07 624.224
0.000451353 1.41403e+07 605.955
0.000459932 2.07319e+07 592.662
0.000474703 1.83299e+07 566.562
0.000489386 1.92407e+07 541.442
0.000504157 2.11504e+07 519.719
0.000510348 1.27272e+07 505.368
0.000518928 1.79562e+07 497.727
0.000533699 1.70459e+07 479.382
0.000548381 1.69039e+07 461.221
0.000563063 1.6385e+07 446.693
0.000569255 1.26681e+07 439.165
0.000577834 1.61233e+07 434.267
0.000592605 1.53267e+07 421.757
0.000607376 1.48461e+07 407.866
0.000622059 1.40123e+07 396.055
0.00062825 1.20319e+07 390.636
0.00063683 1.31144e+07 384.251
0.0006516 1.16017e+07 373.826
0.000666371 1.1686e+07 365.092
0.000681054 1.23481e+07 357.809
0.000687245 9.81036e+06 352.914
0.000695825 1.1782e+07 350.159
0.000710507 1.09466e+07 342.395
0.000725278 1.0816e+07 334.673
0.000739961 1.13402e+07 327.753
0.000746152 9.30285e+06 323.132
0.000754732 9.99053e+06 319.076
0.000769502 9.21866e+06 311.966
0.000784273 9.00319e+06 305.553
0.000798956 8.76383e+06 299.932
0.000805147 8.50154e+06 298.178
0.000813727 8.59584e+06 294.437
0.000828498 8.30058e+06 289.296
0.000843269 8.17499e+06 283.712
0.000857951 7.52411e+06 278.13
0.000864142 7.53775e+06 276.837
0.000872633 7.44451e+06 272.922
0.000887404 6.9687e+06 267.848
0.000902175 6.82011e+06 263.148
0.000916946 6.51453e+06 258.983
0.000923138 6.64946e+06 258.352
0.000931629 6.58032e+06 255.102
0.0009464 6.38528e+06 251.208
0.00096117 6.30208e+06 247.126
0.000975941 6.06328e+06 243.068
0.000982133 6.00861e+06 242.072
0.000990624 5.91276e+06 238.943
0.00100539 5.58208e+06 234.966
0.00102008 5.41065e+06 231.251
0.00103485 5.21948e+06 228.051
0.00104104 5.36067e+06 227.629
0.00104953 5.16759e+06 225.019
0.0010643 5.06648e+06 221.885
0.00107907 4.98466e+06 218.547
0.00109384 4.72689e+06 215.031
0.00110003 4.77521e+06 214.305
0.00110853 4.64452e+06 211.782
0.0011233 4.43666e+06 208.548
0.00113807 4.22615e+06 205.543
0.00115284 4.04944e+06 202.81
0.00115903 4.1576e+06 202.392
0.00116752 4.0427e+06 200.268
0.0011822 4.08441e+06 197.834
0.00119697 3.99083e+06 195.054
0.00121175 3.8475e+06 192.227
0.00121794 3.76403e+06 191.38
0.00122652 3.64849e+06 189.35
0.0012412 3.49246e+06 186.613
0.00125597 3.3736e+06 184.131
0.00127693 3.31725e+06 181.407
0.00133584 3.00905e+06 172.352
0.00139483 2.65474e+06 163.997
0.00145383 2.44799e+06 156.44
0.00151274 2.21057e+06 149.07
0.00157173 1.93609e+06 142.343
0.00160092 1.96864e+06 139.705
0.00163073 1.79341e+06 136.191
0.00168963 1.64542e+06 130.321
0.00174863 1.48378e+06 124.828
0.00180753 1.32822e+06 119.87
0.00183672 1.34737e+06 117.853
0.00186653 1.24054e+06 115.05
0.00192553 1.15237e+06 110.669
0.00198443 1.06062e+06 106.346
0.00204352 942193 102.201
0.0020727 971348 100.667
0.00210242 882518 98.3129
0.00216142 812956 90.6563
0.00222041 751348 85.5865
0.00227932 661582 82.5591
0.00230851 702361 83.2993
0.00233831 634345 83.7386
0.00239722 588597 77.0515
0.00245622 546645 74.475
0.00251521 485107 72.0371
0.0025444 518271 71.2492
0.00257412 470363 69.6967
0.00263311 428566 67.4163
0.00269211 383587 65.3736
0.0027802 369095 62.915
0.0030161 279035 55.8783
0.00325199 218287 50.0284
0.00348788 169973 44.9183
0.00372368 132858 40.5794
0.00395958 107515 7.43972
0.00419538 84897.1 6.64065
0.00443127 69166.7 5.99763
0.00466716 56372.1 5.45451
0.00490297 47105.1 5.00216
0.00513886 38770.4 4.60551
0.00537466 32822.1 4.28091
0.00561065 27786.6 3.99215
0.00584645 23773.3 3.74405
0.00608234 20713.7 3.52884
0.00631815 17695.1 3.32995
0.00655404 15461.5 3.16037
0.00678993 13774.7 3.01166
0.00702582 11854.7 2.86918
0.00726163 10660.3 2.74895
0.00749743 9189.86 2.63429
0.00773332 8176.52 2.53748
0.00796921 7433.08 2.44863
0.00820511 6704.03 2.36697
0.00844091 5918.04 2.29218
0.0086768 5468.4 2.22717
0.00891261 5050.13 2.1601
0.00914859 4494.16 2.09694
0.00938439 3882.64 2.03912
0.00962028 3773.96 1.9894
0.00985609 3206.87 1.93717
0.010092 2935.34 1.8957
0.0103279 2674.6 1.85859
0.0104458 2748.02 1.84512
0.0105638 2646.21 1.82164
0.0107996 2081.7 1.78264
0.0110354 2162.24 1.75923
0.0112713 1830.79 1.72526
0.0113893 1913.91 1.7191
0.0115072 1750.46 1.70363
0.011743 1541.35 1.67677
0.0119789 1573.93 1.65675
0.0122147 1395.23 1.63174
0.0123326 1289.07 1.62249
0.0124505 1222.05 1.6123
0.0126865 1255.8 1.59555
0.0129223 1024.6 1.57692
0.0131582 1128.63 1.56441
0.0132761 1008.17 1.55535
0.0142196 798.904 1.50508
0.0151631 626.378 1.46166
0.0161065 560.703 1.42482
0.0170499 387.439 1.39316
0.0179933 335.73 1.37318
0.0189368 310.426 1.35248
0.0198803 223.556 1.33271
0.0208238 242.893 1.3229
0.0217672 147.677 1.30757
0.0227106 116.96 1.30381
0.023654 159.529 1.30093
0.0245975 147.386 1.28888
0.025541 86.8102 1.27828
0.0264845 114.506 1.27858
0.0274279 85.257 1.27158
0.0283713 94.5837 1.27033
0.0293147 86.7099 1.27083
0.0302582 57.2489 1.26587
0.0312017 90.387 1.26671
0.0321451 66.7975 1.25974
0.0330885 34.1223 1.25796
0.034032 48.8609 1.25858
0.0349755 57.2385 1.25971
0.0359189 66.0593 1.26103
0.0368623 50.589 1.25534
0.0378057 63.1686 1.25507
0.0387492 50.9829 1.25495
0.0396927 39.1202 1.25071
0.0406362 43.4404 1.25334
0.0415795 40.4346 1.25233
0.0425229 69.9954 1.25764
0.0429947 39.2769 1.25491
0.0434664 58.6994 1.25613
0.0444099 27.6781 1.25011
0.0453533 43.3934 1.25594
0.0462968 46.363 1.25534
0.0467685 38.5031 1.25637
0.0472402 34.2826 1.25581
0.0481837 63.6022 1.26048
0.0491271 37.446 1.25422
0.0500705 43.1007 1.25656
0.0505422 65.9353 1.25899
0.051014 42.3343 1.25301
0.0519574 27.5126 1.25023
0.0529008 57.3534 1.2583
0.0538443 41.1987 1.25495
0.054316 55.663 1.25647
0.0547878 39.659 1.25364
0.0557312 21.728 1.25236
0.0566745 41.1834 1.25924
0.0580898 33.2259 1.25824
0.0618635 41.9094 1.26309
0.0656372 42.522 1.26249
0.0694109 41.2406 1.2647
0.0731847 39.09 1.26368
0.0769583 34.9213 1.26555
0.0807321 39.3656 1.26895
0.0845057 47.7574 1.27167
0.0882794 32.574 1.26913
0.0920531 31.6117 1.27279
0.0958267 40.9348 1.27939
0.0996003 40.3366 1.27929
0.103374 41.41 1.28285
0.107148 33.916 1.28113
0.110921 43.2686 1.28426
0.114695 36.6086 1.28385
0.118468 34.4078 1.28837
0.122242 38.4219 1.29084
0.126015 40.0076 1.29471
0.129789 37.1277 1.29618
0.133562 31.2248 1.29856
0.137336 46.1959 1.30577
0.141109 37.2431 1.30129
0.144883 34.8983 1.30765
0.148656 41.4621 1.31024
0.152429 36.9387 1.30974
0.156203 37.0536 1.31639
0.159976 41.2406 1.3178
0.163749 33.1301 1.32281
0.167523 36.6595 1.32564
0.171296 48.666 1.32861
0.175069 35.5872 1.32443
0.178843 43.5421 1.33117
0.182616 33.6132 1.33153
0.186389 40.2225 1.33532
0.190162 42.6709 1.33442
0.193935 34.5404 1.33652
0.197708 46.1562 1.34276
0.201481 37.2635 1.33804
0.205254 31.2563 1.34263
0.209027 44.7302 1.34766
0.2128 34.5282 1.34668
0.216573 40.6662 1.3538
0.220346 39.1768 1.35074
0.224119 34.2228 1.35581
Too big for the documentation. See the source code distribution.