Table Of Contents

Previous topic

Command-line program for Jemian/Lake desmearing

Next topic

Desmearing parameters, the Info object

This Page

Example using test1.smr data set

Input Commands

Start the program from the data directory in the source tree. We’ll use UNIX shell redirection to get everything in a text file:

cd src/jldesmear/data
python ../api/traditional.py < test1.inp > test1.out

The program will print a header:

<<<     SAS data desmearing, by Pete R. Jemian
<<<     Based on the iterative technique of JA Lake and PR Jemian.
<<<     P.R.Jemian,; Ph.D. thesis, Northwestern University (1990).
<<<     J.A. Lake; ACTA CRYST 23 (1967) 191-194.
<<<
<<<     $Id$
<<<     desmear using the same FORTRAN & C command line interface
<<<

Then, the program will ask some questions about the input data. Here, the test data is test1.smr:

<<< What is the input data file name? <''=Quit> <> ==>
>>> test1.smr

Name the (new) file name to write the results. If it exists, it will be overwritten without further comment. Here, we choose the name test1.out:

<<< What is the output data file name? <> ==>
>>> test1.out

The slit length is the term l_o and has the same units as X:

<<< What is the slit length (x-axis units)? <1.0> ==>
>>> .08

To complete the smearing integral at highest X, it is necessary to extrapolate beyond the range of measured data. Choose the functional form that best represents the data at highest X. Fit coefficients will be evaluated for each desmearing iteration over the range X_start <= X <= X_max:

<<< Extrapolation forms to avoid truncation-error.
<<<    constant = flat background, I(q) = B
<<<    linear = linear, I(q) = b + q * m
<<<    powerlaw = power law, I(q) = b * q^m
<<<    Porod = Porod law, I(q) = Cp + Bkg / q^4
<<<

Choose the linear form (although constant would work with this data as well):

<<< Which form? <constant> ==>
>>> linear

This is X-start as noted above: .08:

<<< What X to begin evaluating extrapolation (x-axis units)? <1.0> ==>
>>> .08

Accept the solution after 20 iterations this time:

<<< How many iteration(s)? (10000 = infinite) <10000> ==>
>>> 20

This question is largely historical. The fast method is always the best choice. The others were implementations of either Jansson or Halsey & Blass. They converge more slowly by far. That said, you are free to re-determine this for yourself. Press the [return] key to accept the default suggestion:

<<<  Weighting methods for iterative corrections:
<<<  Correction = weight * (MeasuredI - SmearedI)
<<<    constant: weight = 1.0
<<<    fast: weight = CorrectedI / SmearedI
<<<    ChiSqr: weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))
<<<
<<< Which method? <fast> ==>
>>>

Program output to console

Now the program starts the work of desmearing. The first step shows an awful chi-square statistic. This will improve with subsequent iterations. The plot is standardized residual vs. data point number. There are ========== bars indicated at +1 and -1; these merge together on the first plot.:

Input file: test1.smr
-/|\ ...
standardized residuals, ChiSqr = 1.29823e+07, iteration=0
x: min=1   step=3.45833   max=250
y: min=-545.836   step=24.8717   max=1.34169
 -------------------------------------------------------------------------
|                                                          +              |
|==============================================+++++++++++++++++++++++++++|
|+                                            ++                          |
|                                            ++                           |
|                                          ++                             |
|+                              +        ++                               |
|++                             +       ++                                |
|                              +       ++                                 |
|                            +++      ++                                  |
|                          +++        +                                   |
|                        ++          +                                    |
|                       ++          ++                                    |
|                      +            +                                     |
| ++                +++            ++                                     |
|  ++          +++++               +                                      |
|   ++++++++++++                   +                                      |
|                                 +                                       |
|                                 +                                       |
|                                 +                                       |
|                                +                                        |
|                                +                                        |
|                                +                                        |
|                                +                                        |
 -------------------------------------------------------------------------

After the next iteration, the chi-squared statistic has improved by an order of magnitude but the plot still does not different:

standardized residuals, ChiSqr = 1.36804e+06, iteration=1
x: min=1   step=3.45833   max=250
y: min=-206.354   step=9.44611   max=1.46073
 -------------------------------------------------------------------------
|                                                          +              |
|================================================+++++++++++++++++++++++++|
|+                                             ++                         |
|                                             ++                          |
|+                                            +                           |
| +                             +            +                            |
|                             +++           ++                            |
|                         +++++           ++                              |
|                       +++              ++                               |
| ++               +++++                ++                                |
|  ++        +++++++                   ++                                 |
|  +++++++++++                         +                                  |
|     +                               +                                   |
|                                     +                                   |
|                                    +                                    |
|                                   ++                                    |
|                                   +                                     |
|                                  +                                      |
|                                  +                                      |
|                                 +                                       |
|                                 +                                       |
|                                +                                        |
|                                +                                        |
 -------------------------------------------------------------------------

Skipping forward a few iterations, we see some real progress:

standardized residuals, ChiSqr = 566.385, iteration=5
x: min=1   step=3.45833   max=250
y: min=-3.97891   step=0.499962   max=7.02024
 -------------------------------------------------------------------------
|  +                                                                      |
|   +                                                                     |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
| +  +                                   +                                |
|       +                               + +++                             |
|                                      +  ++++                            |
|+     +                              ++++   +                            |
|++    +                              ++                                  |
|  +      +  ++                      ++       +                           |
|=======+===+=+=++=++=+==============+=============+===+===+======+====== |
| +       ++ +++ + ++ +++++++  +              +    + ++ + ++++++++++++++++|
|+ +++ + + ++  +++++ + ++++++++++             + + ++++ + ++++++++++++++++ |
|+ + + ++ + +       ++  +  +  + +   ++          +++ +++++ ++  +           |
|========+===================++=====+==========+=+++=====+=============== |
|     +                            +           +++                        |
|   +                                                                     |
|        +                         +                                      |
|                                ++                                       |
|                                ++                                       |
 -------------------------------------------------------------------------

After about 10 iterations or so, it seems convergence has been achieved. The chi-squared statistic has dropped and the plot looks more randomly-arranged about 0.:

standardized residuals, ChiSqr = 103.479, iteration=11
x: min=1   step=3.45833   max=250
y: min=-2.89125   step=0.349475   max=4.7972
 -------------------------------------------------------------------------
|   +                                                                     |
|  +                                                                      |
|                                                                         |
|                                                                         |
|                                                                         |
|    +                                                                    |
|       +                                                                 |
|                                                                         |
|                                                                         |
|                                                                         |
|+                                                                        |
|=+====+================================================================= |
|  +   ++ +   +     +                           +  +   +   +              |
| +      +       +  +   ++ ++ +     + ++      ++ +++ ++ + +               |
|+ +++   ++++++++++++ ++ +++++ ++++++++++++++ ++++  ++++ +++++++++++++++++|
|  + ++    +++ ++ ++++ +++++++++ ++     ++++++++ +++++ ++ ++ ++  +  ++++  |
|++    +  + +                            +  ++     +  +  + +              |
|====++=+================================================================ |
|+     +                                                                  |
|                                                                         |
|        +                                                                |
|                                                                         |
|   +                                                                     |
 -------------------------------------------------------------------------

Finally, after 20 iterations (numbered 0 .. 19):

standardized residuals, ChiSqr = 46.9362, iteration=19
x: min=1   step=3.45833   max=250
y: min=-2.94353   step=0.264922   max=2.88475
 -------------------------------------------------------------------------
|   +                                                                     |
|                                                                         |
|  +                                                                      |
|                                                                         |
|    +                                                                    |
|       +                                                                 |
|                                                                         |
|+                                                                        |
|==+===================================================================== |
|      + ++                                                               |
|  +  + ++    +  +  +   ++  + +             +   ++++  +++ ++             +|
| +  +++  ++++++ ++ + ++ ++++++++++++++++++++++++++++++++++ +++++++++++++ |
|  ++ +  ++++++ ++++ + +++++++++ + ++ ++++++++++++++++ +++++ + ++ + ++ ++ |
|++                                              + +  ++ + +              |
|+     +                                                                  |
|======+================================================================= |
|    +  ++                                                                |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|   +                                                                     |
 -------------------------------------------------------------------------

The result is accepted and the data are saved to the output file:

Saving data in file: test1.out
SAS log-log plot, final, S=input, D=desmeared
x: min=-7.898   step=0.0889226   max=-1.49558
y: min=3.0786   step=0.637599   max=17.1058
 -------------------------------------------------------------------------
|D                                                                        |
|DDDDDD                                                                   |
|D DDDDDDDD                                                               |
|         DDDDD                                                           |
|             DDD                                                         |
|                DDD                                                      |
|                  DDD                                                    |
|                     DD                                                  |
|SSSSS                  DDD                                               |
|    SSSSSSS              DD                                              |
|          SSSSS            DDD                                           |
|               SSSS          DD                                          |
|                  SSSS        DDD                                        |
|                      SSS        DD                                      |
|                         SSS      DDD                                    |
|                           SSS      DDD                                  |
|                              SSS     DDD                                |
|                                SSSS    DDD                              |
|                                   SSS     DD                            |
|                                     SSSS   DDDD                         |
|                                        SSSSS DDDD                       |
|                                            SSSSSDDDDDDDDDD  D DD DDDDDD |
|                                                  D DDDDDSSDDDDDDDDDDDDDD|
 -------------------------------------------------------------------------

Data Files

Command Input File (test1.inp)

test1.smr
test1.dsm
0.08
linear
0.08
20
fast

Input Data File (test1.smr)

0.000371484	211554	1874.86
0.000386255	201603	1721.35
0.000392446	193423	4250.66
0.000400937	205280	1563.25
0.000415708	198569	1446.58
0.000430391	198201	1334.48
0.000445162	191430	624.224
0.000451353	188171	605.955
0.000459932	192450	592.662
0.000474703	186589	566.562
0.000489386	184247	541.442
0.000504157	179316	519.719
0.000510348	172441	505.368
0.000518928	175473	497.727
0.000533699	171012	479.382
0.000548381	167081	461.221
0.000563063	162303	446.693
0.000569255	158623	439.165
0.000577834	160015	434.267
0.000592605	155494	421.757
0.000607376	151073	407.866
0.000622059	146555	396.055
0.00062825	143885	390.636
0.00063683	143034	384.251
0.0006516	139041	373.826
0.000666371	136947	365.092
0.000681054	134324	357.809
0.000687245	131392	352.914
0.000695825	131867	350.159
0.000710507	128250	342.395
0.000725278	125404	334.673
0.000739961	122355	327.753
0.000746152	119544	323.132
0.000754732	118748	319.076
0.000769502	115545	311.966
0.000784273	113124	305.553
0.000798956	110665	299.932
0.000805147	109629	298.178
0.000813727	108497	294.437
0.000828498	106067	289.296
0.000843269	103730	283.712
0.000857951	101055	278.13
0.000864142	100263	276.837
0.000872633	98975.8	272.922
0.000887404	96617	267.848
0.000902175	94721.9	263.148
0.000916946	92784.7	258.983
0.000923138	92237.6	258.352
0.000931629	91165.3	255.102
0.0009464	89261.8	251.208
0.00096117	87432.7	247.126
0.000975941	85430.8	243.068
0.000982133	84676.8	242.072
0.000990624	83582.8	238.943
0.00100539	81637.9	234.966
0.00102008	80007.9	231.251
0.00103485	78480.9	228.051
0.00104104	78020.3	227.629
0.00104953	76980.6	225.019
0.0010643	75445.5	221.885
0.00107907	73855.7	218.547
0.00109384	72137.1	215.031
0.00110003	71587.7	214.305
0.00110853	70608.1	211.782
0.0011233	69061.3	208.548
0.00113807	67611.7	205.543
0.00115284	66343.4	202.81
0.00115903	65983.2	202.392
0.00116752	65188.2	200.268
0.0011822	64072.9	197.834
0.00119697	62740.3	195.054
0.00121175	61380.9	192.227
0.00121794	60799.2	191.38
0.00122652	60016.7	189.35
0.0012412	58722.4	186.613
0.00125597	57573.3	184.131
0.00127693	56176.4	181.407
0.00133584	52010.5	172.352
0.00139483	48213.1	163.997
0.00145383	44843.2	156.44
0.00151274	41576.4	149.07
0.00157173	38658.5	142.343
0.00160092	37457.7	139.705
0.00163073	36024.4	136.191
0.00168963	33573.8	130.321
0.00174863	31319.9	124.828
0.00180753	29339.2	119.87
0.00183672	28494.9	117.853
0.00186653	27449.7	115.05
0.00192553	25747.7	110.669
0.00198443	24113.1	106.346
0.00204352	22592.2	102.201
0.0020727	22004.4	100.667
0.00210242	21173.5	98.3129
0.00216142	19890	90.6563
0.00222041	18698.5	85.5865
0.00227932	17602	82.5591
0.00230851	17224	83.2993
0.00233831	16587.4	83.7386
0.00239722	15654	77.0515
0.00245622	14772.5	74.475
0.00251521	13950.9	72.0371
0.0025444	13671.6	71.2492
0.00257412	13179.3	69.6967
0.00263311	12441.4	67.4163
0.00269211	11793.6	65.3736
0.0027802	11030.1	62.915
0.0030161	8974.34	55.8783
0.00325199	7394.04	50.0284
0.00348788	6118.83	44.9183
0.00372368	5113.03	40.5794
0.00395958	4318.86	7.43972
0.00419538	3658.3	6.64065
0.00443127	3139.32	5.99763
0.00466716	2713.56	5.45451
0.00490297	2365	5.00216
0.00513886	2070.02	4.60551
0.00537466	1830.58	4.28091
0.00561065	1625.29	3.99215
0.00584645	1453.64	3.74405
0.00608234	1305.37	3.52884
0.00631815	1174.14	3.32995
0.00655404	1064.44	3.16037
0.00678993	967.427	3.01166
0.00702582	878.938	2.86918
0.00726163	803.771	2.74895
0.00749743	734.672	2.63429
0.00773332	677.548	2.53748
0.00796921	626.597	2.44863
0.00820511	579.635	2.36697
0.00844091	536.91	2.29218
0.0086768	500.271	2.22717
0.00891261	464.949	2.1601
0.00914859	430.058	2.09694
0.00938439	399.444	2.03912
0.00962028	375.619	1.9894
0.00985609	348.697	1.93717
0.010092	328.261	1.8957
0.0103279	309.772	1.85859
0.0104458	302.426	1.84512
0.0105638	292.196	1.82164
0.0107996	272.191	1.78264
0.0110354	261.342	1.75923
0.0112713	245.999	1.72526
0.0113893	241.462	1.7191
0.0115072	233.87	1.70363
0.011743	222.267	1.67677
0.0119789	213.558	1.65675
0.0122147	202.04	1.63174
0.0123326	196.924	1.62249
0.0124505	192.761	1.6123
0.0126865	185.892	1.59555
0.0129223	176.483	1.57692
0.0131582	171.938	1.56441
0.0132761	167.199	1.55535
0.0142196	144.551	1.50508
0.0151631	126.664	1.46166
0.0161065	112.514	1.42482
0.0170499	98.3946	1.39316
0.0179933	90.2142	1.37318
0.0189368	82.8805	1.35248
0.0198803	75.2953	1.33271
0.0208238	71.261	1.3229
0.0217672	64.006	1.30757
0.0227106	61.7542	1.30381
0.023654	61.7168	1.30093
0.0245975	57.8197	1.28888
0.025541	54.3294	1.27828
0.0264845	53.7715	1.27858
0.0274279	51.3464	1.27158
0.0283713	50.7223	1.27033
0.0293147	48.6453	1.27083
0.0302582	46.8375	1.26587
0.0312017	47.594	1.26671
0.0321451	44.9242	1.25974
0.0330885	42.9397	1.25796
0.034032	44.3886	1.25858
0.0349755	44.6934	1.25971
0.0359189	44.6929	1.26103
0.0368623	43.0895	1.25534
0.0378057	43.2662	1.25507
0.0387492	42.1147	1.25495
0.0396927	41.2501	1.25071
0.0406362	41.5693	1.25334
0.0415795	41.4826	1.25233
0.0425229	42.423	1.25764
0.0429947	40.4159	1.25491
0.0434664	41.3698	1.25613
0.0444099	39.2216	1.25011
0.0453533	40.7132	1.25594
0.0462968	40.6365	1.25534
0.0467685	40.1072	1.25637
0.0472402	39.9715	1.25581
0.0481837	41.5141	1.26048
0.0491271	39.4205	1.25422
0.0500705	39.967	1.25656
0.0505422	40.7231	1.25899
0.051014	39.0016	1.25301
0.0519574	38.1899	1.25023
0.0529008	40.2931	1.2583
0.0538443	38.8024	1.25495
0.054316	39.2194	1.25647
0.0547878	37.9188	1.25364
0.0557312	36.8598	1.25236
0.0566745	38.9685	1.25924
0.0580898	38.4669	1.25824
0.0618635	39.8942	1.26309
0.0656372	39.609	1.26249
0.0694109	38.9038	1.2647
0.0731847	38.208	1.26368
0.0769583	38.1583	1.26555
0.0807321	39.239	1.26895
0.0845057	38.8689	1.27167
0.0882794	36.3077	1.26913
0.0920531	37.3417	1.27279
0.0958267	39.2128	1.27939
0.0996003	38.8772	1.27929
0.103374	38.2984	1.28285
0.107148	37.2503	1.28113
0.110921	38.2859	1.28426
0.114695	37.1071	1.28385
0.118468	37.2796	1.28837
0.122242	38.1078	1.29084
0.126015	37.9901	1.29471
0.129789	37.2332	1.29618
0.133562	37.525	1.29856
0.137336	39.7959	1.30577
0.141109	37.5901	1.30129
0.144883	37.5137	1.30765
0.148656	38.3692	1.31024
0.152429	37.9165	1.30974
0.156203	38.4753	1.31639
0.159976	38.8267	1.3178
0.163749	37.9845	1.32281
0.167523	39.9222	1.32564
0.171296	41.1806	1.32861
0.175069	38.5425	1.32443
0.178843	39.2107	1.33117
0.182616	38.3168	1.33153
0.186389	40.2098	1.33532
0.190162	39.1407	1.33442
0.193935	38.3557	1.33652
0.197708	39.7318	1.34276
0.201481	36.7008	1.33804
0.205254	37.2223	1.34263
0.209027	39.6126	1.34766
0.2128	37.604	1.34668
0.216573	39.0708	1.3538
0.220346	38.2783	1.35074
0.224119	38.589	1.35581

Output Data File (test1.dsm)

0.000371484	2.68503e+07	1874.86
0.000386255	1.89615e+07	1721.35
0.000392446	9.24608e+06	4250.66
0.000400937	2.3107e+07	1563.25
0.000415708	1.83063e+07	1446.58
0.000430391	2.17062e+07	1334.48
0.000445162	1.77899e+07	624.224
0.000451353	1.41403e+07	605.955
0.000459932	2.07319e+07	592.662
0.000474703	1.83299e+07	566.562
0.000489386	1.92407e+07	541.442
0.000504157	2.11504e+07	519.719
0.000510348	1.27272e+07	505.368
0.000518928	1.79562e+07	497.727
0.000533699	1.70459e+07	479.382
0.000548381	1.69039e+07	461.221
0.000563063	1.6385e+07	446.693
0.000569255	1.26681e+07	439.165
0.000577834	1.61233e+07	434.267
0.000592605	1.53267e+07	421.757
0.000607376	1.48461e+07	407.866
0.000622059	1.40123e+07	396.055
0.00062825	1.20319e+07	390.636
0.00063683	1.31144e+07	384.251
0.0006516	1.16017e+07	373.826
0.000666371	1.1686e+07	365.092
0.000681054	1.23481e+07	357.809
0.000687245	9.81036e+06	352.914
0.000695825	1.1782e+07	350.159
0.000710507	1.09466e+07	342.395
0.000725278	1.0816e+07	334.673
0.000739961	1.13402e+07	327.753
0.000746152	9.30285e+06	323.132
0.000754732	9.99053e+06	319.076
0.000769502	9.21866e+06	311.966
0.000784273	9.00319e+06	305.553
0.000798956	8.76383e+06	299.932
0.000805147	8.50154e+06	298.178
0.000813727	8.59584e+06	294.437
0.000828498	8.30058e+06	289.296
0.000843269	8.17499e+06	283.712
0.000857951	7.52411e+06	278.13
0.000864142	7.53775e+06	276.837
0.000872633	7.44451e+06	272.922
0.000887404	6.9687e+06	267.848
0.000902175	6.82011e+06	263.148
0.000916946	6.51453e+06	258.983
0.000923138	6.64946e+06	258.352
0.000931629	6.58032e+06	255.102
0.0009464	6.38528e+06	251.208
0.00096117	6.30208e+06	247.126
0.000975941	6.06328e+06	243.068
0.000982133	6.00861e+06	242.072
0.000990624	5.91276e+06	238.943
0.00100539	5.58208e+06	234.966
0.00102008	5.41065e+06	231.251
0.00103485	5.21948e+06	228.051
0.00104104	5.36067e+06	227.629
0.00104953	5.16759e+06	225.019
0.0010643	5.06648e+06	221.885
0.00107907	4.98466e+06	218.547
0.00109384	4.72689e+06	215.031
0.00110003	4.77521e+06	214.305
0.00110853	4.64452e+06	211.782
0.0011233	4.43666e+06	208.548
0.00113807	4.22615e+06	205.543
0.00115284	4.04944e+06	202.81
0.00115903	4.1576e+06	202.392
0.00116752	4.0427e+06	200.268
0.0011822	4.08441e+06	197.834
0.00119697	3.99083e+06	195.054
0.00121175	3.8475e+06	192.227
0.00121794	3.76403e+06	191.38
0.00122652	3.64849e+06	189.35
0.0012412	3.49246e+06	186.613
0.00125597	3.3736e+06	184.131
0.00127693	3.31725e+06	181.407
0.00133584	3.00905e+06	172.352
0.00139483	2.65474e+06	163.997
0.00145383	2.44799e+06	156.44
0.00151274	2.21057e+06	149.07
0.00157173	1.93609e+06	142.343
0.00160092	1.96864e+06	139.705
0.00163073	1.79341e+06	136.191
0.00168963	1.64542e+06	130.321
0.00174863	1.48378e+06	124.828
0.00180753	1.32822e+06	119.87
0.00183672	1.34737e+06	117.853
0.00186653	1.24054e+06	115.05
0.00192553	1.15237e+06	110.669
0.00198443	1.06062e+06	106.346
0.00204352	942193	102.201
0.0020727	971348	100.667
0.00210242	882518	98.3129
0.00216142	812956	90.6563
0.00222041	751348	85.5865
0.00227932	661582	82.5591
0.00230851	702361	83.2993
0.00233831	634345	83.7386
0.00239722	588597	77.0515
0.00245622	546645	74.475
0.00251521	485107	72.0371
0.0025444	518271	71.2492
0.00257412	470363	69.6967
0.00263311	428566	67.4163
0.00269211	383587	65.3736
0.0027802	369095	62.915
0.0030161	279035	55.8783
0.00325199	218287	50.0284
0.00348788	169973	44.9183
0.00372368	132858	40.5794
0.00395958	107515	7.43972
0.00419538	84897.1	6.64065
0.00443127	69166.7	5.99763
0.00466716	56372.1	5.45451
0.00490297	47105.1	5.00216
0.00513886	38770.4	4.60551
0.00537466	32822.1	4.28091
0.00561065	27786.6	3.99215
0.00584645	23773.3	3.74405
0.00608234	20713.7	3.52884
0.00631815	17695.1	3.32995
0.00655404	15461.5	3.16037
0.00678993	13774.7	3.01166
0.00702582	11854.7	2.86918
0.00726163	10660.3	2.74895
0.00749743	9189.86	2.63429
0.00773332	8176.52	2.53748
0.00796921	7433.08	2.44863
0.00820511	6704.03	2.36697
0.00844091	5918.04	2.29218
0.0086768	5468.4	2.22717
0.00891261	5050.13	2.1601
0.00914859	4494.16	2.09694
0.00938439	3882.64	2.03912
0.00962028	3773.96	1.9894
0.00985609	3206.87	1.93717
0.010092	2935.34	1.8957
0.0103279	2674.6	1.85859
0.0104458	2748.02	1.84512
0.0105638	2646.21	1.82164
0.0107996	2081.7	1.78264
0.0110354	2162.24	1.75923
0.0112713	1830.79	1.72526
0.0113893	1913.91	1.7191
0.0115072	1750.46	1.70363
0.011743	1541.35	1.67677
0.0119789	1573.93	1.65675
0.0122147	1395.23	1.63174
0.0123326	1289.07	1.62249
0.0124505	1222.05	1.6123
0.0126865	1255.8	1.59555
0.0129223	1024.6	1.57692
0.0131582	1128.63	1.56441
0.0132761	1008.17	1.55535
0.0142196	798.904	1.50508
0.0151631	626.378	1.46166
0.0161065	560.703	1.42482
0.0170499	387.439	1.39316
0.0179933	335.73	1.37318
0.0189368	310.426	1.35248
0.0198803	223.556	1.33271
0.0208238	242.893	1.3229
0.0217672	147.677	1.30757
0.0227106	116.96	1.30381
0.023654	159.529	1.30093
0.0245975	147.386	1.28888
0.025541	86.8102	1.27828
0.0264845	114.506	1.27858
0.0274279	85.257	1.27158
0.0283713	94.5837	1.27033
0.0293147	86.7099	1.27083
0.0302582	57.2489	1.26587
0.0312017	90.387	1.26671
0.0321451	66.7975	1.25974
0.0330885	34.1223	1.25796
0.034032	48.8609	1.25858
0.0349755	57.2385	1.25971
0.0359189	66.0593	1.26103
0.0368623	50.589	1.25534
0.0378057	63.1686	1.25507
0.0387492	50.9829	1.25495
0.0396927	39.1202	1.25071
0.0406362	43.4404	1.25334
0.0415795	40.4346	1.25233
0.0425229	69.9954	1.25764
0.0429947	39.2769	1.25491
0.0434664	58.6994	1.25613
0.0444099	27.6781	1.25011
0.0453533	43.3934	1.25594
0.0462968	46.363	1.25534
0.0467685	38.5031	1.25637
0.0472402	34.2826	1.25581
0.0481837	63.6022	1.26048
0.0491271	37.446	1.25422
0.0500705	43.1007	1.25656
0.0505422	65.9353	1.25899
0.051014	42.3343	1.25301
0.0519574	27.5126	1.25023
0.0529008	57.3534	1.2583
0.0538443	41.1987	1.25495
0.054316	55.663	1.25647
0.0547878	39.659	1.25364
0.0557312	21.728	1.25236
0.0566745	41.1834	1.25924
0.0580898	33.2259	1.25824
0.0618635	41.9094	1.26309
0.0656372	42.522	1.26249
0.0694109	41.2406	1.2647
0.0731847	39.09	1.26368
0.0769583	34.9213	1.26555
0.0807321	39.3656	1.26895
0.0845057	47.7574	1.27167
0.0882794	32.574	1.26913
0.0920531	31.6117	1.27279
0.0958267	40.9348	1.27939
0.0996003	40.3366	1.27929
0.103374	41.41	1.28285
0.107148	33.916	1.28113
0.110921	43.2686	1.28426
0.114695	36.6086	1.28385
0.118468	34.4078	1.28837
0.122242	38.4219	1.29084
0.126015	40.0076	1.29471
0.129789	37.1277	1.29618
0.133562	31.2248	1.29856
0.137336	46.1959	1.30577
0.141109	37.2431	1.30129
0.144883	34.8983	1.30765
0.148656	41.4621	1.31024
0.152429	36.9387	1.30974
0.156203	37.0536	1.31639
0.159976	41.2406	1.3178
0.163749	33.1301	1.32281
0.167523	36.6595	1.32564
0.171296	48.666	1.32861
0.175069	35.5872	1.32443
0.178843	43.5421	1.33117
0.182616	33.6132	1.33153
0.186389	40.2225	1.33532
0.190162	42.6709	1.33442
0.193935	34.5404	1.33652
0.197708	46.1562	1.34276
0.201481	37.2635	1.33804
0.205254	31.2563	1.34263
0.209027	44.7302	1.34766
0.2128	34.5282	1.34668
0.216573	40.6662	1.3538
0.220346	39.1768	1.35074
0.224119	34.2228	1.35581

Complete Program Output (test1.out)

Too big for the documentation. See the source code distribution.